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Use Case: Big Data Regimes
Distributively Working With a Very Large Dataset {x;}/_,
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Why use Second-Order Methods?

Second-order methods employ curvature (Hessian matrix) information to
transform the gradient so that it is a more suitable direction to follow.
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Our Method: DINGO

Derived by optimization of the gradient’s norm as a surrogate function, i.e.,
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DINGO is for “Dlstributed Newton-type method for Gradient-norm
Optimization”. DINGO is particularly suitable for invex objectives. A strict linear-
rate reduction in the gradient norm is always guaranteed.
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Convex
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Invex
e Hessian can be

indefinite and singular.
* Local minima are
global minima.
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Non-Convex
e Hessian can be
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—== Synchronous SGD
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Softmax regression, with regularization, problem on the CIFAR10 dataset.

Each Iteration of DINGO
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Update Direction: p,

Case 1

If: (LY HY ge Hege ) = 011g¢]I? then pe = 2372, pe; with pey = —H[ g
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Line Search: «a,
Distributively choose largest a; € (0,1] such that ||[Vf (W + a:p)||? < llgell? + 2a.p{ps, He gt )-

Example: Backtracking Line Search

Compute Vf;(wy + apy) Va € {1, w, ..., w"*}, where w € (0,1),k € N

Let a; = max{1, ..., w"*} such that ||[Vf (W + a:p)lI? < lgell? + 2a:p{ps, He gy )

Update

The constants 8, ¢ > 0 and p € (0,1) are hyper-parameters. The vector w, € R denotes the point at
iteration t. For notational convenience, we denote g.; & Vf;(wy), He; & V2f;(Wy), ge & Vf (wy),
H, & V2f (w,). We also let

IT . def Ht;' ~ aer |9
H,; = ¢11 e R2xd, g, |T| e R,

where [ is the identity matrix and 0 is the zero vector. Green and purple rectangles represent the
driver node and worker nodes, respectively.



