DINGO: Distributed Newton-Type Method for Gradient-Norm Optimization

Rixon Crane*, Fred Roosta* *School of Mathematics and Physics, University of Queensland, Australia.

Why use Second-Order Methods?

Second-order methods employ curvature (Hessian matrix) information to transform the gradient so that it is a more suitable direction to follow.

	Benefits				
Perform more computations per iteration			May take full adva distributed compu		
May require significantly less communication costs			Often require far f achieve sim		

Our Method: DINGO

Derived by optimization of the gradient's norm as a surrogate function, i.e.,

$$\min_{w \in \mathbb{R}^d} \left\{ \frac{1}{2} \|\nabla f(w)\|^2 = \frac{1}{2m^2} \left\| \sum_{i=1}^m \nabla f_i(w) \right\|^2 \right\}.$$

"Distributed Newton-type method for Gradient-norm DINGO for İS Optimization". DINGO is particularly suitable for invex objectives. A strict linearrate reduction in the gradient norm is always guaranteed.

Every Minute There Are:

~4,000,000 Searches

Songs Streamed

_ +	$\int n \int n$	
こし	$\{\mathcal{X}_i\}_{i=1}$	

antage of available itational resources

ewer iterations to ilar results

Related Work

Method	Applicable to Non- Convex Functions	Arbitrary Data Distribution	Arbi ⁻ Form
GIANT	X	X	>
DiSCO	X	\checkmark	
DANE	\checkmark	\checkmark	
InexactDANE	\checkmark	\checkmark	
AIDE	\checkmark	\checkmark	
DINGO	\checkmark	\checkmark	

- Hessian is positive
- semidefinite. Local minima are
- global minima.

- Hessian can be indefinite and singular.
- Local minima are global minima.

Softmax regression, with regularization, problem on the CIFAR10 dataset.

 Hessian can be indefinite and singular. Not all local minima

are global minima.

Each Iteration of DINGO

The constants θ , $\phi > 0$ and $\rho \in (0,1)$ are hyper-parameters. The vector $w_t \in \mathbb{R}^d$ denotes the point at iteration t. For notational convenience, we denote $g_{t,i} \stackrel{\text{\tiny def}}{=} \nabla f_i(w_t)$, $H_{t,i} \stackrel{\text{\tiny def}}{=} \nabla^2 f_i(w_t)$, $g_t \stackrel{\text{\tiny def}}{=} \nabla f(w_t)$, $H_t \stackrel{\text{\tiny def}}{=} \nabla^2 f(w_t)$. We also let

where I is the identity matrix and 0 is the zero vector. Green and purple rectangles represent the driver node and worker nodes, respectively.

 $\widetilde{H}_{t,i} \stackrel{\text{\tiny def}}{=} \begin{bmatrix} H_{t,i} \\ \phi I \end{bmatrix} \in \mathbb{R}^{2d \times d}, \qquad \widetilde{g}_t \stackrel{\text{\tiny def}}{=} \begin{bmatrix} g_t \\ 0 \end{bmatrix} \in \mathbb{R}^{2d},$